-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
47 lines (41 loc) · 1.4 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------
import torch
from torch.functional import Tensor
def compound_loss_only_cls(
output_label,
targets,
criterion_ce,
epoch,
):
cls_loss = []
for i, label in enumerate(output_label):
ratio_c = (i + 1) / len(output_label)
l = criterion_ce(label, targets) * ratio_c
# if dist.get_rank() == 0:
# print(f'ihx: {ihx}, ihy: {ihy}')
cls_loss.append(l)
# feature_loss.append(torch.dist(output_feature[i], teacher_feature) * feature_coe)
final_cls_loss = criterion_ce(output_label[-1], targets)
cls_loss.append(final_cls_loss)
# print(feature_loss)
loss = torch.sum(torch.stack(cls_loss), dim=0)
del cls_loss
return loss
def TET_loss(outputs, labels, criterion, means, lamb):
T = outputs.size(0)
Loss_es = 0
for t in range(T):
Loss_es += criterion(outputs[t, ...], labels)
Loss_es = Loss_es / T # L_TET
if lamb != 0:
MMDLoss = torch.nn.MSELoss()
y = torch.zeros_like(outputs).fill_(means)
Loss_mmd = MMDLoss(outputs, y) # L_mse
else:
Loss_mmd = 0
return (1 - lamb) * Loss_es + lamb * Loss_mmd # L_Total