-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
221 lines (169 loc) · 8.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torchvision.models
import torch.optim as optim
import os
import time
from torch import Tensor
from tqdm import tqdm
import utils.evaluate as evaluate
from loguru import logger
from data.data_loader import sample_dataloader
import modules as mods
def AllLoss(code_length, gamma, alpha, beta):
def forward(U_latent, U_image, U_label, U_ae_rec, U_ae_target, B, S):
def feature_loss(F, B, S):
# hash_loss = ((code_length * S - F @ B.t()) ** 2).mean()
hash_loss = (((code_length * S - F @ B.t()) * 12.0 / code_length) ** 2).mean()
quantization_loss = ((F - B) ** 2).mean()
return hash_loss + gamma * quantization_loss
def ae_loss(recon_x, x):
return ((recon_x - x) ** 2).mean()
loss = (
feature_loss(U_image, B, S)
+ alpha * feature_loss(U_label, B, S)
+ beta * (feature_loss(U_latent, B, S)
+ ae_loss(U_ae_rec, U_ae_target))
)
return loss
return forward
def train(
query_dataloader,
retrieval_dataloader,
code_length,
logdir,
args
):
"""
Training model.
Args
query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.
code_length(int): Hashing code length.
args: arguments.
Returns
mAP(float): Mean Average Precision.
"""
num_retrieval = len(retrieval_dataloader.dataset)
# Initialization
model_image = mods.alexnet(code_length).to(args.device)
model_label = mods.mlp(args.class_num, code_length).to(args.device)
model_gcn = mods.GCN(args.embedding_size, args.hidden_size, code_length, args.gcn_dropout).to(args.device)
model_ae_image = mods.ae(code_length, args.hidden_size, args.embedding_size).to(args.device)
criterion_all = AllLoss(code_length, args.gamma, args.alpha, args.beta)
optimizer_image = optim.Adam(model_image.parameters(), lr=args.lr, weight_decay=1e-5)
optimizer_label = optim.Adam(model_label.parameters(), lr=args.lr, weight_decay=1e-5)
optimizer_gcn = optim.Adam(model_gcn.parameters(), lr=args.lr, weight_decay=1e-5)
optimizer_ae = optim.Adam(model_ae_image.parameters(), lr=args.lr, weight_decay=1e-5)
# retrieval_targets_onehot = retrieval_dataloader.dataset.get_onehot_targets().to(args.device)
retrieval_targets_onehot = retrieval_dataloader.dataset.get_onehot_targets()
# B_all = torch.randn(num_retrieval, code_length).to(args.device)
B_all = torch.zeros(num_retrieval, code_length).to(args.device)
# U_image = torch.zeros(args.num_samples, code_length).to(args.device)
# U_label = torch.zeros(args.num_samples, code_length).to(args.device)
# U_gcn = torch.zeros(args.num_samples, code_length).to(args.device)
mAP_best = 0
mAP_best_res = None
start = time.time()
for it in range(args.max_iter):
U_image_sample = torch.zeros(args.num_samples, code_length).to(args.device)
U_label_sample = torch.zeros(args.num_samples, code_length).to(args.device)
U_latent_sample = torch.zeros(args.num_samples, code_length).to(args.device)
iter_start = time.time()
# Sample training data for cnn learning
train_dataloader, sample_index_in_all = sample_dataloader(retrieval_dataloader, args.num_samples, args.batch_size, args.root, args.dataset)
sample_index_in_all = sample_index_in_all.to(args.device)
# Create Similarity matrix
# train_targets_onehot = train_dataloader.dataset.get_onehot_targets().to(args.device)
train_targets_onehot = train_dataloader.dataset.get_onehot_targets()
S_ = (train_targets_onehot @ retrieval_targets_onehot.t() > 0).float()
S_neg1 = torch.where(S_ == 1, torch.full_like(S_, 1), torch.full_like(S_, -1))
# Soft similarity matrix, benefit to converge
r = S_neg1.sum() / (1 - S_neg1).sum()
S_neg1 = S_neg1 * (1 + r) - r
S_neg1 = S_neg1.to(args.device)
train_targets_onehot = train_targets_onehot.to(args.device)
for epoch in tqdm(range(args.max_epoch)):
for batch, (data, targets, batch_index_in_sample) in enumerate(train_dataloader):
data, targets, batch_index_in_sample = data.to(args.device), targets.to(args.device), batch_index_in_sample.to(args.device)
batch_sim = ((train_targets_onehot[batch_index_in_sample] @
train_targets_onehot[batch_index_in_sample].T) > 0).float()
batch_sim_neg1 = torch.where(batch_sim == 1, torch.full_like(batch_sim, 1), torch.full_like(batch_sim, -1))
optimizer_image.zero_grad()
output = model_image(data)
U_image = output
optimizer_label.zero_grad()
output = model_label(train_targets_onehot[batch_index_in_sample])
U_label = output
optimizer_ae.zero_grad()
output_ae_image, latent_space = model_ae_image(U_label.detach())
optimizer_gcn.zero_grad()
output = model_gcn(latent_space, batch_sim)
U_latent = output
loss = criterion_all(U_latent, U_image, U_label,
output_ae_image, U_image.detach(),
B_all[sample_index_in_all[batch_index_in_sample], :],
batch_sim_neg1)
loss.backward()
optimizer_gcn.step()
optimizer_image.step()
optimizer_label.step()
optimizer_ae.step()
U_latent_sample[batch_index_in_sample, :] = U_latent.detach()
U_image_sample[batch_index_in_sample, :], U_label_sample[batch_index_in_sample, :] = U_image.detach(), U_label.detach()
def calc_dcc():
B, U, S = B_all[sample_index_in_all, :], U_image_sample, S_neg1[:, sample_index_in_all]
Q = (code_length * S).t() @ U + args.gamma * U
for bit in range(code_length):
q = Q[:, bit]
u = U[:, bit]
B_prime = torch.cat((B[:, :bit], B[:, bit + 1:]), dim=1)
U_prime = torch.cat((U[:, :bit], U[:, bit + 1:]), dim=1)
B[:, bit] = (q.t() - B_prime @ U_prime.t() @ u.t() + args.alpha * U_label_sample[:, bit] + args.beta*U_latent_sample[:, bit]).sign()
return B
B_all[sample_index_in_all, :] = calc_dcc()
logger.debug('[iter:{}/{}][iter_time:{:.2f}]'.format(it + 1, args.max_iter, time.time() - iter_start))
if (it + 1) % args.eval_iter == 0:
# Evaluate
query_code = generate_code(model_image, query_dataloader, code_length, args.device)
mAP = evaluate.mean_average_precision(
query_code.to(args.device),
B_all,
query_dataloader.dataset.get_onehot_targets().to(args.device),
retrieval_targets_onehot.to(args.device),
args.device,
args.topk,
)
logger.info("[Evaluation][dataset:{}][bits:{}][iter:{}/{}][mAP:{:.4f}]".format(args.dataset, code_length, it + 1, args.max_iter, mAP))
if mAP > mAP_best:
mAP_best = mAP
mAP_best_res = [query_code.cpu(), B_all.cpu(), query_dataloader.dataset.get_onehot_targets().cpu(), retrieval_targets_onehot.cpu()]
logger.info('[Training time:{:.2f}]'.format(time.time() - start))
if mAP_best_res is not None:
query_code, database_code, query_targets, database_targets = mAP_best_res
# Save checkpoints
gen_name = lambda name: os.path.join(logdir, f'{args.dataset}-{code_length}bits-{mAP_best}-{name}.t')
torch.save(query_code, gen_name("query_code"))
torch.save(database_code, gen_name("database_code"))
torch.save(query_targets, gen_name("query_targets"))
torch.save(database_targets, gen_name("database_targets"))
torch.save(model_image, gen_name("model_image"))
return mAP_best
def generate_code(model, dataloader, code_length, device):
"""
Generate hash code
Args
dataloader(torch.utils.data.DataLoader): Data loader.
code_length(int): Hash code length.
device(torch.device): Using gpu or cpu.
Returns
code(torch.Tensor): Hash code.
"""
model.eval()
with torch.no_grad():
N = len(dataloader.dataset)
code = torch.zeros([N, code_length])
for data, _, index in dataloader:
data = data.to(device)
hash_code = model(data)
code[index, :] = hash_code.sign().cpu()
model.train()
return code