-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
185 lines (149 loc) · 5.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
from pprint import pformat
from typing import Any
import ignite.distributed as idist
from ignite.engine import create_supervised_evaluator
import yaml
from data import setup_data
from ignite.engine import Events
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed
from models import setup_model
from torch import nn, optim
from trainers import setup_evaluator, setup_trainer
from utils import *
import hydra
from omegaconf import DictConfig, OmegaConf
def run(local_rank: int, config: Any):
# make a certain seed
rank = idist.get_rank()
manual_seed(config.seed + rank)
# if rank == 0:
# from clearml import Task
# task = Task.init(project_name='multi-source', task_name='Office-Home Source Model Training')
# create output folder
config.output_dir = setup_output_dir(config, rank)
# donwload datasets and create dataloaders
dataloader_train, dataloader_eval = setup_data(config)
# model, optimizer, loss function, device
device = idist.device()
model = idist.auto_model(setup_model(config))
optimizer = idist.auto_optim(optim.AdamW(model.parameters(), lr=config.lr))
loss_fn = nn.CrossEntropyLoss().to(device=device)
# trainer and evaluator
trainer = setup_trainer(
config, model, optimizer, loss_fn, device, dataloader_train.sampler
)
evaluator = setup_evaluator(config, model, device)
# from torch.optim.lr_scheduler import ExponentialLR
# from torch.optim import lr_scheduler
# from ignite.contrib.handlers import LRScheduler, create_lr_scheduler_with_warmup
# # step_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.99)
# step_scheduler=lr_scheduler.CyclicLR(
# optimizer,base_lr=0.00002,max_lr=0.0002,step_size_up=30,step_size_down=30, cycle_momentum=False
# )
# # scheduler = LRScheduler(step_scheduler)
# scheduler = create_lr_scheduler_with_warmup(step_scheduler,
# warmup_start_value=0.0002,
# warmup_end_value=0.0002,
# warmup_duration=30*20)
# trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)
# from ignite.handlers import FastaiLRFinder
# lr_finder = FastaiLRFinder()
# to_save = {"model": model, "optimizer": optimizer}
# with lr_finder.attach(trainer, to_save=to_save, start_lr=1e-6) as trainer_with_lr_finder:
# trainer_with_lr_finder.run(dataloader_train)
# # Get lr_finder results
# print(lr_finder.get_results())
# # Plot lr_finder results (requires matplotlib)
# # lr_finder.plot()
# ax = lr_finder.plot(skip_end=0, skip_start=0)
# ax.figure.savefig("output.jpg")
# # get lr_finder suggestion for lr
# print(lr_finder.lr_suggestion())
# exit()
# attach metrics to evaluator
accuracy = Accuracy(device=device)
metrics = {
"eval_accuracy": accuracy,
"eval_loss": Loss(loss_fn, device=device),
# "eval_error": (1.0 - accuracy) * 100,
}
for name, metric in metrics.items():
metric.attach(evaluator, name)
train_evaluator = create_supervised_evaluator(model, metrics = {
"train_accuracy": Accuracy(device=device),
"train_loss": Loss(loss_fn, device=device),
}, device=device)
# setup engines logger with python logging
# print training configurations
logger = setup_logging("ignite", config)
logger.info("Configuration: \n%s", pformat(vars(config)))
(config.output_dir / "config-lock.yaml").write_text(yaml.dump(OmegaConf.to_yaml(config)))
trainer.logger = setup_logging("trainer", config)
evaluator.logger = setup_logging("evaluator", config)
train_evaluator.logger = setup_logging("train_evaluator", config)
# setup ignite handlers
to_save_train = {"model": model, "optimizer": optimizer, "trainer": trainer}
to_save_eval = {"model": model}
ckpt_handler_train, ckpt_handler_eval = setup_handlers(
trainer, evaluator, config, to_save_train, to_save_eval
)
# experiment tracking
if rank == 0:
exp_logger = setup_exp_logging(config, trainer, optimizer, {
"eval_evaluator": evaluator,
"train_evaluator": train_evaluator
})
# print metrics to the stderr
# with `add_event_handler` API
# for training stats
trainer.add_event_handler(
Events.ITERATION_COMPLETED(every=config.log_every_iters),
log_metrics,
tag="train",
)
# run evaluation at every training epoch end
# with shortcut `on` decorator API and
# print metrics to the stderr
# again with `add_event_handler` API
# for evaluation stats
@trainer.on(Events.EPOCH_COMPLETED(every=1))
def _():
train_evaluator.run(dataloader_train)
log_metrics(train_evaluator, "train_evaluator")
evaluator.run(dataloader_eval)
log_metrics(evaluator, "eval")
# let's try run evaluation first as a sanity check
@trainer.on(Events.STARTED)
def _():
evaluator.run(dataloader_eval)
log_metrics(evaluator, "init_eval")
# setup if done. let's run the training
trainer.run(
dataloader_train,
max_epochs=config.max_epochs,
)
# close logger
if rank == 0:
exp_logger.close()
# show last checkpoint names
logger.info(
"Last training checkpoint name - %s",
ckpt_handler_train.last_checkpoint,
)
logger.info(
"Last evaluation checkpoint name - %s",
ckpt_handler_eval.last_checkpoint,
)
# main entrypoint
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(cfg : DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
with idist.Parallel() as p:
# with idist.Parallel("gloo") as p:
p.run(run, config=cfg)
if __name__ == "__main__":
# CUBLAS_WORKSPACE_CONFIG=:4096:8
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
main()