-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_MCW.py
229 lines (164 loc) · 7.65 KB
/
test_MCW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import glob
import os
from pprint import pformat
from typing import Any
from ignite.engine import create_supervised_evaluator
import yaml
from data import setup_data
from ignite.engine import Events
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed
from models import setup_model
from torch import nn, optim
from trainers import setup_evaluator, setup_trainer
from utils import *
from tqdm import tqdm
import hydra
from omegaconf import DictConfig, OmegaConf
def run(config: Any):
# make a certain seed
manual_seed(config.seed)
logger = logging.getLogger()
dataloader_train, dataloader_test = setup_data(
config, is_test=True, few_shot_num=config.few_shot_num
)
num_classes = config.dataset.num_classes
domains = config.dataset.domains
# domains = config.dataset.domains[:4]
# domains = ["v_task2", "v_task1"]
# source_domains = [i for i in config.dataset.domains if i != config.dataset.domain]
sigma = torch.zeros((len(domains), config.model.hidden_dim)).cuda()
g = torch.zeros((num_classes, config.model.hidden_dim, len(domains))).cuda()
checkpoint_root = os.path.join("./checkpoints", config.dataset.name)
print(f"target domain: {config.dataset.domain}")
with torch.no_grad():
running_probs_train = torch.zeros((len(dataloader_train.dataset), num_classes)).cuda()
running_probs_test = torch.zeros((len(dataloader_test.dataset), num_classes)).cuda()
for i, d in enumerate(domains):
if d == config.dataset.domain:
continue
print(f"domain: {d}")
model = setup_model(config, return_feat_only=True)
candidate_checkpoint = glob.glob(
os.path.join(checkpoint_root, d, "*.pt")
)
assert len(candidate_checkpoint) == 1
checkpoint_path = candidate_checkpoint[0]
to_save_eval = {"model": model}
resume_from(to_save_eval, checkpoint_path, logger)
print(f"checkpoint loaded from {checkpoint_path}")
model.eval()
model.cuda()
print(f"extract features by {d}-trained model")
data_list = [data for data in dataloader_train]
all_data = list(zip(*data_list))
inputs = torch.cat(all_data[0], dim=0)
labels = torch.cat(all_data[1], dim=0)
inputs = inputs.cuda()
labels = labels.cuda()
# sigma = torch.zeros((len(domains), config.model.hidden_dim))
# g = torch.zeros((num_classes, config.model.hidden_dim, len(domains)))
sigma[i, :], g[:, :, i] = compute_max_corr(
model, inputs, labels, num_classes
)
res_ = weighted_network_output( # only one batch! so this is correct
model, sigma[i, :], g[:, :, i], inputs
)
running_probs_train += res_
print(f"acc: {(torch.argmax(res_, dim=1) == labels.long()).float().mean().item()}")
r = 0
for batch_index, data in enumerate(tqdm(dataloader_test)):
index_start = batch_index * dataloader_test.batch_size
index_end = min(index_start + dataloader_test.batch_size, len(dataloader_test.dataset))
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
res = weighted_network_output(
model, sigma[i, :], g[:, :, i], inputs
)
running_probs_test[index_start:index_end] += res
# tqdm.write(f"acc: {(torch.argmax(res, dim=1) == labels.long()).sum().item()/labels.size(0)} label: {labels.long()[0]}")
r += (torch.argmax(res, dim=1) == labels.long()).sum().item()
print(f"acc: {r/len(dataloader_test.dataset)}")
# all_feats_train = torch.zeros(
# (len(dataloader_train.dataset), config.model.hidden_dim * len(domains))
# )
# all_feats_test = torch.zeros((len(testloader.dataset), config.model.hidden_dim * len(domains)))
# for i in range(len(domains)):
# for data in dataloader_train:
# # get the inputs
# inputs, labels_train = data
# all_feats_train[:, i * config.model.hidden_dim : (i + 1) * config.model.hidden_dim] = all_nets[i][0](inputs)
# for data in testloader:
# inputs, labels_test = data
# all_feats_test[:, i * config.model.hidden_dim : (i + 1) * config.model.hidden_dim] = all_nets[i][0](inputs)
print(f"\n\n*******start test on {config.dataset.domain}*******")
running_probs_train = running_probs_train.cpu()
_, predicted_test = torch.max(running_probs_train, 1)
acc_test = 0
for batch_index, data in enumerate(tqdm(dataloader_train)):
index_start = batch_index * dataloader_train.batch_size
index_end = min(index_start + dataloader_train.batch_size, len(dataloader_train.dataset))
inputs, labels = data
acc_test += (
(predicted_test[index_start:index_end] == labels.long()).sum().item()
) # /labels.size(0)
print("Train accuracy: ", acc_test / len(dataloader_train.dataset))
running_probs_test = running_probs_test.cpu()
_, predicted_test = torch.max(running_probs_test, 1)
acc_test = 0
for batch_index, data in enumerate(tqdm(dataloader_test)):
index_start = batch_index * dataloader_test.batch_size
index_end = min(index_start + dataloader_test.batch_size, len(dataloader_test.dataset))
inputs, labels = data
acc_test += (
(predicted_test[index_start:index_end] == labels.long()).sum().item()
) # /labels.size(0)
print("Test accuracy: ", acc_test / len(dataloader_test.dataset))
def compute_max_corr(net, data, labels, num_classes):
"""Computes maximal correlation and also returns the associated g(y)"""
outputs = net(data)
outputs -= outputs.mean(dim=0)
outputs /= get_std_devs(net, data)
# outputs = outputs.cpu()
g_y = torch.zeros((num_classes, outputs.shape[1])).cuda()
for idx, row in enumerate(outputs.split(1)):
g_y[labels[idx]] += row.detach().reshape(-1)
g_y /= labels.shape[0]
sigma = torch.zeros(outputs.shape[1]).cuda()
for idx, row in enumerate(outputs.split(1)):
sigma += row.detach().reshape(-1) * g_y[labels[idx], :]
sigma /= labels.shape[0]
# make sure signs are positive
g_y *= sigma.sign()
sigma *= sigma.sign()
return sigma, g_y
def weighted_network_output(net, sigma, g, inputs):
"""Output weighted sum(sigma*f*g) for both values of g"""
outputs = net(inputs)
outputs -= outputs.mean(dim=0)
# outputs = outputs.cpu()
outputs *= sigma.reshape(1, -1)
outputs = torch.mm(outputs, g.permute(1, 0))
return outputs
def get_means(net, inputs):
outputs = net(inputs)
return outputs.mean(dim=0)
def get_std_devs(net, inputs):
outputs = net(inputs)
outputs -= outputs.mean(dim=0)
stds = torch.sqrt(torch.diag(torch.mm(outputs.permute(1, 0), outputs)))
stds[stds == 0] = 1
return stds
# main entrypoint
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
# with idist.Parallel() as p:
# # with idist.Parallel("gloo") as p:
# p.run(run, config=cfg)
run(cfg)
if __name__ == "__main__":
# CUBLAS_WORKSPACE_CONFIG=:4096:8
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
main()