-
Notifications
You must be signed in to change notification settings - Fork 770
/
Copy pathhair_segmentation.cc
261 lines (230 loc) · 10.9 KB
/
hair_segmentation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Tencent is pleased to support the open source community by making TNN available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "hair_segmentation.h"
namespace TNN_NS {
Status HairSegmentation::ConvertMat(std::shared_ptr<Mat> src, std::shared_ptr<Mat> dst) {
if (DimsVectorUtils::Count(src->GetDims()) != DimsVectorUtils::Count(dst->GetDims()))
return Status(TNNERR_PARAM_ERR, "src and dst mat have different dims!");
if (src->GetMatType() == dst->GetMatType()) {
return TNN_OK;
} else {
auto src_mat_type = src->GetMatType();
auto dst_mat_type = dst->GetMatType();
auto count = DimsVectorUtils::Count(src->GetDims());
if (src_mat_type == NCHW_FLOAT && dst_mat_type == NGRAY) {
auto src_ptr = static_cast<float *>(src->GetData());
auto dst_ptr = static_cast<uint8_t *>(dst->GetData());
for(int i=0; i<count; ++i) {
dst_ptr[i] = static_cast<uint8_t>(src_ptr[i] * 255.0f);
}
} else if (src_mat_type == NGRAY && dst_mat_type == NCHW_FLOAT) {
auto src_ptr = static_cast<uint8_t *>(src->GetData());
auto dst_ptr = static_cast<float *>(dst->GetData());
for(int i=0; i<count; ++i) {
dst_ptr[i] = static_cast<float>(src_ptr[i] / 255.0f);
}
} else {
return Status(TNNERR_INST_ERR, "unsupported mat type pair!");
}
}
return TNN_OK;
}
Status HairSegmentation::Init(std::shared_ptr<TNNSDKOption> option_i) {
Status status = TNN_OK;
auto option = dynamic_cast<HairSegmentationOption *>(option_i.get());
RETURN_VALUE_ON_NEQ(!option, false, Status(TNNERR_PARAM_ERR, "TNNSDKOption is invalid"));
status = TNNSDKSample::Init(option_i);
RETURN_ON_NEQ(status, TNN_OK);
auto input_dims = GetInputShape();
option->input_height = input_dims[2];
option->input_width = input_dims[3];
return status;
}
MatConvertParam HairSegmentation::GetConvertParamForInput(std::string tag) {
MatConvertParam input_convert_param;
input_convert_param.scale = {1.0 / (255 * 0.229), 1.0 / (255 * 0.224), 1.0 / (255 * 0.225), 0.0};
input_convert_param.bias = {-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225, 0.0};
return input_convert_param;
}
std::shared_ptr<TNNSDKOutput> HairSegmentation::CreateSDKOutput() {
return std::make_shared<HairSegmentationOutput>();
}
std::shared_ptr<Mat> HairSegmentation::ProcessSDKInputMat(std::shared_ptr<Mat> input_image, std::string name) {
RETURN_VALUE_ON_NEQ(input_image->GetMatType(), N8UC4, nullptr);
this->orig_dims = input_image->GetDims();
// save input image mat for merging
auto dims = input_image->GetDims();
//dims[1] = 4;
this->input_image = std::make_shared<Mat>(DEVICE_NAIVE, N8UC4, dims);
auto status = Copy(input_image, this->input_image);
RETURN_VALUE_ON_NEQ(status, TNN_OK, nullptr);
auto target_dims = GetInputShape(name);
auto input_height = input_image->GetHeight();
auto input_width = input_image->GetWidth();
if (target_dims.size() >= 4 &&
(input_height != target_dims[2] || input_width != target_dims[3])) {
auto target_mat = std::make_shared<TNN_NS::Mat>(input_image->GetDeviceType(),
input_image->GetMatType(), target_dims);
auto status = Resize(input_image, target_mat, TNNInterpLinear);
if (status == TNN_OK) {
return target_mat;
} else {
LOGE("%s\n", status.description().c_str());
return nullptr;
}
}
return input_image;
}
std::shared_ptr<Mat> HairSegmentation::MergeImage(std::shared_ptr<Mat> alpha, RGBA color) {
auto merged_image = std::make_shared<Mat>(alpha->GetDeviceType(), N8UC4, orig_dims);
auto alpha_data = static_cast<float *>(alpha->GetData());
auto image_data = static_cast<uint8_t *>(input_image->GetData());
auto merged_image_data = static_cast<uint8_t *>(merged_image->GetData());
auto hw = orig_dims[2] * orig_dims[3];
auto channel = orig_dims[1];
for(int s=0; s<hw; ++s) {
float hair_conf = alpha_data[s];
//float bg_conf = 1 - hair_conf;
const float bg_conf = 1.0f;
const float merge_weight = color.a/255.0f;
float c0 = bg_conf * image_data[s*channel + 0] + merge_weight * hair_conf * color.r;
float c1 = bg_conf * image_data[s*channel + 1] + merge_weight * hair_conf * color.g;
float c2 = bg_conf * image_data[s*channel + 2] + merge_weight * hair_conf * color.b;
float c3 = 255;
merged_image_data[s*4 + 0] = static_cast<uint8_t>(std::min(255.0f, std::max(0.0f, c0)));
merged_image_data[s*4 + 1] = static_cast<uint8_t>(std::min(255.0f, std::max(0.0f, c1)));
merged_image_data[s*4 + 2] = static_cast<uint8_t>(std::min(255.0f, std::max(0.0f, c2)));
merged_image_data[s*4 + 3] = static_cast<uint8_t>(std::min(255.0f, std::max(0.0f, c3)));
}
return merged_image;
}
Status HairSegmentation::ProcessSDKOutput(std::shared_ptr<TNNSDKOutput> output_) {
Status status = TNN_OK;
auto option = dynamic_cast<HairSegmentationOption *>(option_.get());
RETURN_VALUE_ON_NEQ(!option, false, Status(TNNERR_PARAM_ERR, "TNNOption is invalid"));
auto output = dynamic_cast<HairSegmentationOutput *>(output_.get());
RETURN_VALUE_ON_NEQ(!output, false, Status(TNNERR_PARAM_ERR, "TNNSDKOutput is invalid"));
auto bg = output->GetMat("background");
auto fg = output->GetMat("foreground");
auto alpha = ProcessAlpha(fg, option->mode);
auto merged_image = MergeImage(alpha, this->hair_color_);
alpha = GenerateAlphaImage(alpha);
output->hair_mask = ImageInfo(alpha);
output->merged_image = ImageInfo(merged_image);
return status;
}
std::shared_ptr<Mat> HairSegmentation::ProcessAlpha(std::shared_ptr<Mat> alpha, int mode) {
std::shared_ptr<Mat> rtn = nullptr;
auto alpha_dims = alpha->GetDims();
if (mode == 0 || mode == 1) {
auto resized_dims = orig_dims;
resized_dims[0] = alpha_dims[0];
resized_dims[1] = alpha_dims[1];
// resize
rtn = std::make_shared<Mat>(alpha->GetDeviceType(), alpha->GetMatType(), resized_dims);
auto status = ResizeFloatMat(alpha, rtn, TNNInterpLinear);
RETURN_VALUE_ON_NEQ(status, TNN_OK, nullptr);
if (mode == 0) {
auto data = static_cast<float *>(rtn->GetData());
auto count = DimsVectorUtils::Count(rtn->GetDims());
// clip
auto clip = [](float& val) {
val = val > 0.5? 1 :(val < 0.5? 0:val);
};
std::for_each(data, data+count, clip);
}
} else if (mode == 2) {
//downsample to 64*64
auto resized_dims = alpha->GetDims();
resized_dims[2] = 64;
resized_dims[3] = 64;
auto alpha_small = std::make_shared<Mat>(alpha->GetDeviceType(), alpha->GetMatType(), resized_dims);
auto status = ResizeFloatMat(alpha, alpha_small, TNNInterpLinear);
RETURN_VALUE_ON_NEQ(status, TNN_OK, nullptr);
// step.1: Gaussian Blur
auto alpha_data = static_cast<float *>(alpha_small->GetData());
auto expander = [](float& val){
val = val * 255.0;
};
std::for_each(alpha_data, alpha_data+DimsVectorUtils::Count(alpha_small->GetDims()), expander);
//TODO:: gaussian blur on alpha_data
// step.2: resize & clip
rtn = std::make_shared<Mat>(alpha->GetDeviceType(), alpha->GetMatType(), orig_dims);
status = ResizeFloatMat(alpha_small, rtn, TNNInterpLinear);
RETURN_VALUE_ON_NEQ(status, TNN_OK, nullptr);
alpha_data = static_cast<float *>(rtn->GetData());
auto step2_processor = [](float& val) {
double x = std::exp(2*val - 1);
x = x / (x + 1.0);
x = std::min(1.0, std::max(0.0, (x - 0.5) * 1.5 + 0.4));
x = x < 0.45? 0 : (x>0.9 ? 1.0 : x);
x = std::min(1.0, std::max(0.0, (x - 0.5) * 1.5 + 0.5));
x = std::min(1.0, std::max(0.0, (x - 0.4) / 0.4));
x = 3*x*x - 2*x*x*x;
val = x;
};
std::for_each(alpha_data, alpha_data+DimsVectorUtils::Count(rtn->GetDims()), step2_processor);
} else{
LOGE("invalid alpha process mode!\n");
}
return rtn;
}
std::shared_ptr<Mat> HairSegmentation::GenerateAlphaImage(std::shared_ptr<Mat> alpha) {
RETURN_VALUE_ON_NEQ(alpha->GetChannel(), 1, nullptr);
auto alpha_image_dims = alpha->GetDims();
alpha_image_dims[1] = 4;
auto alpha_image = std::make_shared<Mat>(alpha->GetDeviceType(), N8UC4, alpha_image_dims);
auto alpha_data = static_cast<float *>(alpha->GetData());
auto alpha_image_data = static_cast<uint8_t *>(alpha_image->GetData());
auto alpha_dims = alpha->GetDims();
auto hw = alpha_dims[2] * alpha_dims[3];
for(int i=0; i<hw; ++i) {
float val = static_cast<uint8_t>(std::min(255.0, std::max(0.0, alpha_data[i]*255.0)));
alpha_image_data[i*4 + 0] = val;
alpha_image_data[i*4 + 1] = val;
alpha_image_data[i*4 + 2] = val;
alpha_image_data[i*4 + 3] = 0;
}
return alpha_image;
}
/*
Resize a NCHW_FLOAT mat
allocate buffer N8UC4 mat to perform resize
*/
Status HairSegmentation::ResizeFloatMat(std::shared_ptr<Mat> input_mat, std::shared_ptr<Mat> output_mat, TNNInterpType type) {
Status status = TNN_OK;
RETURN_VALUE_ON_NEQ(input_mat->GetMatType(), NCHW_FLOAT, Status(TNNERR_PARAM_ERR, "invalid input mat, only NCHW_FLAOT supported!"));
auto input_dims = input_mat->GetDims();
auto buffer_mat_type = INVALID;
if (input_dims[1] == 4)
buffer_mat_type = N8UC4;
else if (input_dims[1] == 3)
buffer_mat_type = N8UC3;
else if (input_dims[1] == 1)
buffer_mat_type = NGRAY;
// allocate temp buffer mat
auto input_image_mat = std::make_shared<Mat>(input_mat->GetDeviceType(), buffer_mat_type, input_mat->GetDims());
auto output_image_mat = std::make_shared<Mat>(output_mat->GetDeviceType(), buffer_mat_type, output_mat->GetDims());
// copy input mat
status = ConvertMat(input_mat, input_image_mat);
RETURN_ON_NEQ(status, TNN_OK);
// resize
status = Resize(input_image_mat, output_image_mat, type);
RETURN_ON_NEQ(status, TNN_OK);
// copy back
status = ConvertMat(output_image_mat, output_mat);
RETURN_ON_NEQ(status, TNN_OK);
return status;
}
}