-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathNativeTargetInfo.zig
1118 lines (1035 loc) · 48.1 KB
/
NativeTargetInfo.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
const std = @import("../../std.zig");
const builtin = @import("builtin");
const mem = std.mem;
const assert = std.debug.assert;
const fs = std.fs;
const elf = std.elf;
const native_endian = builtin.cpu.arch.endian();
const NativeTargetInfo = @This();
const Target = std.Target;
const Allocator = std.mem.Allocator;
const CrossTarget = std.zig.CrossTarget;
const windows = std.zig.system.windows;
const darwin = std.zig.system.darwin;
const linux = std.zig.system.linux;
target: Target,
dynamic_linker: DynamicLinker = DynamicLinker{},
pub const DynamicLinker = Target.DynamicLinker;
pub const DetectError = error{
FileSystem,
SystemResources,
SymLinkLoop,
ProcessFdQuotaExceeded,
SystemFdQuotaExceeded,
DeviceBusy,
OSVersionDetectionFail,
Unexpected,
};
/// Given a `CrossTarget`, which specifies in detail which parts of the target should be detected
/// natively, which should be standard or default, and which are provided explicitly, this function
/// resolves the native components by detecting the native system, and then resolves standard/default parts
/// relative to that.
pub fn detect(cross_target: CrossTarget) DetectError!NativeTargetInfo {
var os = cross_target.getOsTag().defaultVersionRange(cross_target.getCpuArch());
if (cross_target.os_tag == null) {
switch (builtin.target.os.tag) {
.linux => {
const uts = std.os.uname();
const release = mem.sliceTo(&uts.release, 0);
// The release field sometimes has a weird format,
// `Version.parse` will attempt to find some meaningful interpretation.
if (std.SemanticVersion.parse(release)) |ver| {
os.version_range.linux.range.min = ver;
os.version_range.linux.range.max = ver;
} else |err| switch (err) {
error.Overflow => {},
error.InvalidVersion => {},
}
},
.solaris => {
const uts = std.os.uname();
const release = mem.sliceTo(&uts.release, 0);
if (std.SemanticVersion.parse(release)) |ver| {
os.version_range.semver.min = ver;
os.version_range.semver.max = ver;
} else |err| switch (err) {
error.Overflow => {},
error.InvalidVersion => {},
}
},
.windows => {
const detected_version = windows.detectRuntimeVersion();
os.version_range.windows.min = detected_version;
os.version_range.windows.max = detected_version;
},
.macos => try darwin.macos.detect(&os),
.freebsd, .netbsd, .dragonfly => {
const key = switch (builtin.target.os.tag) {
.freebsd => "kern.osreldate",
.netbsd, .dragonfly => "kern.osrevision",
else => unreachable,
};
var value: u32 = undefined;
var len: usize = @sizeOf(@TypeOf(value));
std.os.sysctlbynameZ(key, &value, &len, null, 0) catch |err| switch (err) {
error.NameTooLong => unreachable, // constant, known good value
error.PermissionDenied => unreachable, // only when setting values,
error.SystemResources => unreachable, // memory already on the stack
error.UnknownName => unreachable, // constant, known good value
error.Unexpected => return error.OSVersionDetectionFail,
};
switch (builtin.target.os.tag) {
.freebsd => {
// https://www.freebsd.org/doc/en_US.ISO8859-1/books/porters-handbook/versions.html
// Major * 100,000 has been convention since FreeBSD 2.2 (1997)
// Minor * 1(0),000 summed has been convention since FreeBSD 2.2 (1997)
// e.g. 492101 = 4.11-STABLE = 4.(9+2)
const major = value / 100_000;
const minor1 = value % 100_000 / 10_000; // usually 0 since 5.1
const minor2 = value % 10_000 / 1_000; // 0 before 5.1, minor version since
const patch = value % 1_000;
os.version_range.semver.min = .{ .major = major, .minor = minor1 + minor2, .patch = patch };
os.version_range.semver.max = os.version_range.semver.min;
},
.netbsd => {
// #define __NetBSD_Version__ MMmmrrpp00
//
// M = major version
// m = minor version; a minor number of 99 indicates current.
// r = 0 (*)
// p = patchlevel
const major = value / 100_000_000;
const minor = value % 100_000_000 / 1_000_000;
const patch = value % 10_000 / 100;
os.version_range.semver.min = .{ .major = major, .minor = minor, .patch = patch };
os.version_range.semver.max = os.version_range.semver.min;
},
.dragonfly => {
// https://github.com/DragonFlyBSD/DragonFlyBSD/blob/cb2cde83771754aeef9bb3251ee48959138dec87/Makefile.inc1#L15-L17
// flat base10 format: Mmmmpp
// M = major
// m = minor; odd-numbers indicate current dev branch
// p = patch
const major = value / 100_000;
const minor = value % 100_000 / 100;
const patch = value % 100;
os.version_range.semver.min = .{ .major = major, .minor = minor, .patch = patch };
os.version_range.semver.max = os.version_range.semver.min;
},
else => unreachable,
}
},
.openbsd => {
const mib: [2]c_int = [_]c_int{
std.os.CTL.KERN,
std.os.KERN.OSRELEASE,
};
var buf: [64]u8 = undefined;
// consider that sysctl result includes null-termination
// reserve 1 byte to ensure we never overflow when appending ".0"
var len: usize = buf.len - 1;
std.os.sysctl(&mib, &buf, &len, null, 0) catch |err| switch (err) {
error.NameTooLong => unreachable, // constant, known good value
error.PermissionDenied => unreachable, // only when setting values,
error.SystemResources => unreachable, // memory already on the stack
error.UnknownName => unreachable, // constant, known good value
error.Unexpected => return error.OSVersionDetectionFail,
};
// append ".0" to satisfy semver
buf[len - 1] = '.';
buf[len] = '0';
len += 1;
if (std.SemanticVersion.parse(buf[0..len])) |ver| {
os.version_range.semver.min = ver;
os.version_range.semver.max = ver;
} else |_| {
return error.OSVersionDetectionFail;
}
},
else => {
// Unimplemented, fall back to default version range.
},
}
}
if (cross_target.os_version_min) |min| switch (min) {
.none => {},
.semver => |semver| switch (cross_target.getOsTag()) {
.linux => os.version_range.linux.range.min = semver,
else => os.version_range.semver.min = semver,
},
.windows => |win_ver| os.version_range.windows.min = win_ver,
};
if (cross_target.os_version_max) |max| switch (max) {
.none => {},
.semver => |semver| switch (cross_target.getOsTag()) {
.linux => os.version_range.linux.range.max = semver,
else => os.version_range.semver.max = semver,
},
.windows => |win_ver| os.version_range.windows.max = win_ver,
};
if (cross_target.glibc_version) |glibc| {
assert(cross_target.isGnuLibC());
os.version_range.linux.glibc = glibc;
}
// Until https://github.com/ziglang/zig/issues/4592 is implemented (support detecting the
// native CPU architecture as being different than the current target), we use this:
const cpu_arch = cross_target.getCpuArch();
var cpu = switch (cross_target.cpu_model) {
.native => detectNativeCpuAndFeatures(cpu_arch, os, cross_target),
.baseline => Target.Cpu.baseline(cpu_arch),
.determined_by_cpu_arch => if (cross_target.cpu_arch == null)
detectNativeCpuAndFeatures(cpu_arch, os, cross_target)
else
Target.Cpu.baseline(cpu_arch),
.explicit => |model| model.toCpu(cpu_arch),
} orelse backup_cpu_detection: {
break :backup_cpu_detection Target.Cpu.baseline(cpu_arch);
};
var result = try detectAbiAndDynamicLinker(cpu, os, cross_target);
// For x86, we need to populate some CPU feature flags depending on architecture
// and mode:
// * 16bit_mode => if the abi is code16
// * 32bit_mode => if the arch is x86
// However, the "mode" flags can be used as overrides, so if the user explicitly
// sets one of them, that takes precedence.
switch (cpu_arch) {
.x86 => {
if (!std.Target.x86.featureSetHasAny(cross_target.cpu_features_add, .{
.@"16bit_mode", .@"32bit_mode",
})) {
switch (result.target.abi) {
.code16 => result.target.cpu.features.addFeature(
@intFromEnum(std.Target.x86.Feature.@"16bit_mode"),
),
else => result.target.cpu.features.addFeature(
@intFromEnum(std.Target.x86.Feature.@"32bit_mode"),
),
}
}
},
.arm, .armeb => {
// XXX What do we do if the target has the noarm feature?
// What do we do if the user specifies +thumb_mode?
},
.thumb, .thumbeb => {
result.target.cpu.features.addFeature(
@intFromEnum(std.Target.arm.Feature.thumb_mode),
);
},
else => {},
}
cross_target.updateCpuFeatures(&result.target.cpu.features);
return result;
}
/// In the past, this function attempted to use the executable's own binary if it was dynamically
/// linked to answer both the C ABI question and the dynamic linker question. However, this
/// could be problematic on a system that uses a RUNPATH for the compiler binary, locking
/// it to an older glibc version, while system binaries such as /usr/bin/env use a newer glibc
/// version. The problem is that libc.so.6 glibc version will match that of the system while
/// the dynamic linker will match that of the compiler binary. Executables with these versions
/// mismatching will fail to run.
///
/// Therefore, this function works the same regardless of whether the compiler binary is
/// dynamically or statically linked. It inspects `/usr/bin/env` as an ELF file to find the
/// answer to these questions, or if there is a shebang line, then it chases the referenced
/// file recursively. If that does not provide the answer, then the function falls back to
/// defaults.
fn detectAbiAndDynamicLinker(
cpu: Target.Cpu,
os: Target.Os,
cross_target: CrossTarget,
) DetectError!NativeTargetInfo {
const native_target_has_ld = comptime builtin.target.hasDynamicLinker();
const is_linux = builtin.target.os.tag == .linux;
const have_all_info = cross_target.dynamic_linker.get() != null and
cross_target.abi != null and (!is_linux or cross_target.abi.?.isGnu());
const os_is_non_native = cross_target.os_tag != null;
if (!native_target_has_ld or have_all_info or os_is_non_native) {
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
}
if (cross_target.abi) |abi| {
if (abi.isMusl()) {
// musl implies static linking.
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
}
}
// The current target's ABI cannot be relied on for this. For example, we may build the zig
// compiler for target riscv64-linux-musl and provide a tarball for users to download.
// A user could then run that zig compiler on riscv64-linux-gnu. This use case is well-defined
// and supported by Zig. But that means that we must detect the system ABI here rather than
// relying on `builtin.target`.
const all_abis = comptime blk: {
assert(@intFromEnum(Target.Abi.none) == 0);
const fields = std.meta.fields(Target.Abi)[1..];
var array: [fields.len]Target.Abi = undefined;
inline for (fields, 0..) |field, i| {
array[i] = @field(Target.Abi, field.name);
}
break :blk array;
};
var ld_info_list_buffer: [all_abis.len]LdInfo = undefined;
var ld_info_list_len: usize = 0;
const ofmt = cross_target.ofmt orelse Target.ObjectFormat.default(os.tag, cpu.arch);
for (all_abis) |abi| {
// This may be a nonsensical parameter. We detect this with
// error.UnknownDynamicLinkerPath and skip adding it to `ld_info_list`.
const target: Target = .{
.cpu = cpu,
.os = os,
.abi = abi,
.ofmt = ofmt,
};
const ld = target.standardDynamicLinkerPath();
if (ld.get() == null) continue;
ld_info_list_buffer[ld_info_list_len] = .{
.ld = ld,
.abi = abi,
};
ld_info_list_len += 1;
}
const ld_info_list = ld_info_list_buffer[0..ld_info_list_len];
// Best case scenario: the executable is dynamically linked, and we can iterate
// over our own shared objects and find a dynamic linker.
const elf_file = blk: {
// This block looks for a shebang line in /usr/bin/env,
// if it finds one, then instead of using /usr/bin/env as the ELF file to examine, it uses the file it references instead,
// doing the same logic recursively in case it finds another shebang line.
// Since /usr/bin/env is hard-coded into the shebang line of many portable scripts, it's a
// reasonably reliable path to start with.
var file_name: []const u8 = "/usr/bin/env";
// #! (2) + 255 (max length of shebang line since Linux 5.1) + \n (1)
var buffer: [258]u8 = undefined;
while (true) {
const file = fs.openFileAbsolute(file_name, .{}) catch |err| switch (err) {
error.NoSpaceLeft => unreachable,
error.NameTooLong => unreachable,
error.PathAlreadyExists => unreachable,
error.SharingViolation => unreachable,
error.InvalidUtf8 => unreachable,
error.BadPathName => unreachable,
error.PipeBusy => unreachable,
error.FileLocksNotSupported => unreachable,
error.WouldBlock => unreachable,
error.FileBusy => unreachable, // opened without write permissions
error.IsDir,
error.NotDir,
error.InvalidHandle,
error.AccessDenied,
error.NoDevice,
error.FileNotFound,
error.NetworkNotFound,
error.FileTooBig,
error.Unexpected,
=> |e| {
std.log.warn("Encountered error: {s}, falling back to default ABI and dynamic linker.\n", .{@errorName(e)});
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
},
else => |e| return e,
};
errdefer file.close();
const len = preadMin(file, &buffer, 0, buffer.len) catch |err| switch (err) {
error.UnexpectedEndOfFile,
error.UnableToReadElfFile,
=> break :blk file,
else => |e| return e,
};
const newline = mem.indexOfScalar(u8, buffer[0..len], '\n') orelse break :blk file;
const line = buffer[0..newline];
if (!mem.startsWith(u8, line, "#!")) break :blk file;
var it = mem.tokenizeScalar(u8, line[2..], ' ');
file_name = it.next() orelse return defaultAbiAndDynamicLinker(cpu, os, cross_target);
file.close();
}
};
defer elf_file.close();
// If Zig is statically linked, such as via distributed binary static builds, the above
// trick (block self_exe) won't work. The next thing we fall back to is the same thing, but for elf_file.
// TODO: inline this function and combine the buffer we already read above to find
// the possible shebang line with the buffer we use for the ELF header.
return abiAndDynamicLinkerFromFile(elf_file, cpu, os, ld_info_list, cross_target) catch |err| switch (err) {
error.FileSystem,
error.SystemResources,
error.SymLinkLoop,
error.ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded,
=> |e| return e,
error.UnableToReadElfFile,
error.InvalidElfClass,
error.InvalidElfVersion,
error.InvalidElfEndian,
error.InvalidElfFile,
error.InvalidElfMagic,
error.Unexpected,
error.UnexpectedEndOfFile,
error.NameTooLong,
// Finally, we fall back on the standard path.
=> |e| {
std.log.warn("Encountered error: {s}, falling back to default ABI and dynamic linker.\n", .{@errorName(e)});
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
},
};
}
fn glibcVerFromRPath(rpath: []const u8) !std.SemanticVersion {
var dir = fs.cwd().openDir(rpath, .{}) catch |err| switch (err) {
error.NameTooLong => unreachable,
error.InvalidUtf8 => unreachable,
error.BadPathName => unreachable,
error.DeviceBusy => unreachable,
error.NetworkNotFound => unreachable, // Windows-only
error.FileNotFound,
error.NotDir,
error.InvalidHandle,
error.AccessDenied,
error.NoDevice,
=> return error.GLibCNotFound,
error.ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded,
error.SystemResources,
error.SymLinkLoop,
error.Unexpected,
=> |e| return e,
};
defer dir.close();
// Now we have a candidate for the path to libc shared object. In
// the past, we used readlink() here because the link name would
// reveal the glibc version. However, in more recent GNU/Linux
// installations, there is no symlink. Thus we instead use a more
// robust check of opening the libc shared object and looking at the
// .dynstr section, and finding the max version number of symbols
// that start with "GLIBC_2.".
const glibc_so_basename = "libc.so.6";
var f = dir.openFile(glibc_so_basename, .{}) catch |err| switch (err) {
error.NameTooLong => unreachable,
error.InvalidUtf8 => unreachable, // Windows only
error.BadPathName => unreachable, // Windows only
error.PipeBusy => unreachable, // Windows-only
error.SharingViolation => unreachable, // Windows-only
error.NetworkNotFound => unreachable, // Windows-only
error.FileLocksNotSupported => unreachable, // No lock requested.
error.NoSpaceLeft => unreachable, // read-only
error.PathAlreadyExists => unreachable, // read-only
error.DeviceBusy => unreachable, // read-only
error.FileBusy => unreachable, // read-only
error.InvalidHandle => unreachable, // should not be in the error set
error.WouldBlock => unreachable, // not using O_NONBLOCK
error.NoDevice => unreachable, // not asking for a special device
error.AccessDenied,
error.FileNotFound,
error.NotDir,
error.IsDir,
=> return error.GLibCNotFound,
error.FileTooBig => return error.Unexpected,
error.ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded,
error.SystemResources,
error.SymLinkLoop,
error.Unexpected,
=> |e| return e,
};
defer f.close();
return glibcVerFromSoFile(f) catch |err| switch (err) {
error.InvalidElfMagic,
error.InvalidElfEndian,
error.InvalidElfClass,
error.InvalidElfFile,
error.InvalidElfVersion,
error.InvalidGnuLibCVersion,
error.UnexpectedEndOfFile,
=> return error.GLibCNotFound,
error.SystemResources,
error.UnableToReadElfFile,
error.Unexpected,
error.FileSystem,
=> |e| return e,
};
}
fn glibcVerFromSoFile(file: fs.File) !std.SemanticVersion {
var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 align(@alignOf(elf.Elf64_Ehdr)) = undefined;
_ = try preadMin(file, &hdr_buf, 0, hdr_buf.len);
const hdr32 = @as(*elf.Elf32_Ehdr, @ptrCast(&hdr_buf));
const hdr64 = @as(*elf.Elf64_Ehdr, @ptrCast(&hdr_buf));
if (!mem.eql(u8, hdr32.e_ident[0..4], elf.MAGIC)) return error.InvalidElfMagic;
const elf_endian: std.builtin.Endian = switch (hdr32.e_ident[elf.EI_DATA]) {
elf.ELFDATA2LSB => .Little,
elf.ELFDATA2MSB => .Big,
else => return error.InvalidElfEndian,
};
const need_bswap = elf_endian != native_endian;
if (hdr32.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion;
const is_64 = switch (hdr32.e_ident[elf.EI_CLASS]) {
elf.ELFCLASS32 => false,
elf.ELFCLASS64 => true,
else => return error.InvalidElfClass,
};
const shstrndx = elfInt(is_64, need_bswap, hdr32.e_shstrndx, hdr64.e_shstrndx);
var shoff = elfInt(is_64, need_bswap, hdr32.e_shoff, hdr64.e_shoff);
const shentsize = elfInt(is_64, need_bswap, hdr32.e_shentsize, hdr64.e_shentsize);
const str_section_off = shoff + @as(u64, shentsize) * @as(u64, shstrndx);
var sh_buf: [16 * @sizeOf(elf.Elf64_Shdr)]u8 align(@alignOf(elf.Elf64_Shdr)) = undefined;
if (sh_buf.len < shentsize) return error.InvalidElfFile;
_ = try preadMin(file, &sh_buf, str_section_off, shentsize);
const shstr32: *elf.Elf32_Shdr = @ptrCast(@alignCast(&sh_buf));
const shstr64: *elf.Elf64_Shdr = @ptrCast(@alignCast(&sh_buf));
const shstrtab_off = elfInt(is_64, need_bswap, shstr32.sh_offset, shstr64.sh_offset);
const shstrtab_size = elfInt(is_64, need_bswap, shstr32.sh_size, shstr64.sh_size);
var strtab_buf: [4096:0]u8 = undefined;
const shstrtab_len = @min(shstrtab_size, strtab_buf.len);
const shstrtab_read_len = try preadMin(file, &strtab_buf, shstrtab_off, shstrtab_len);
const shstrtab = strtab_buf[0..shstrtab_read_len];
const shnum = elfInt(is_64, need_bswap, hdr32.e_shnum, hdr64.e_shnum);
var sh_i: u16 = 0;
const dynstr: struct { offset: u64, size: u64 } = find_dyn_str: while (sh_i < shnum) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const sh_reserve: usize = @sizeOf(elf.Elf64_Shdr) - @sizeOf(elf.Elf32_Shdr);
const sh_read_byte_len = try preadMin(
file,
sh_buf[0 .. sh_buf.len - sh_reserve],
shoff,
shentsize,
);
var sh_buf_i: usize = 0;
while (sh_buf_i < sh_read_byte_len and sh_i < shnum) : ({
sh_i += 1;
shoff += shentsize;
sh_buf_i += shentsize;
}) {
const sh32: *elf.Elf32_Shdr = @ptrCast(@alignCast(&sh_buf[sh_buf_i]));
const sh64: *elf.Elf64_Shdr = @ptrCast(@alignCast(&sh_buf[sh_buf_i]));
const sh_name_off = elfInt(is_64, need_bswap, sh32.sh_name, sh64.sh_name);
const sh_name = mem.sliceTo(shstrtab[sh_name_off..], 0);
if (mem.eql(u8, sh_name, ".dynstr")) {
break :find_dyn_str .{
.offset = elfInt(is_64, need_bswap, sh32.sh_offset, sh64.sh_offset),
.size = elfInt(is_64, need_bswap, sh32.sh_size, sh64.sh_size),
};
}
}
} else return error.InvalidGnuLibCVersion;
// Here we loop over all the strings in the dynstr string table, assuming that any
// strings that start with "GLIBC_2." indicate the existence of such a glibc version,
// and furthermore, that the system-installed glibc is at minimum that version.
// Empirically, glibc 2.34 libc.so .dynstr section is 32441 bytes on my system.
// Here I use double this value plus some headroom. This makes it only need
// a single read syscall here.
var buf: [80000]u8 = undefined;
if (buf.len < dynstr.size) return error.InvalidGnuLibCVersion;
const dynstr_size = @as(usize, @intCast(dynstr.size));
const dynstr_bytes = buf[0..dynstr_size];
_ = try preadMin(file, dynstr_bytes, dynstr.offset, dynstr_bytes.len);
var it = mem.splitScalar(u8, dynstr_bytes, 0);
var max_ver: std.SemanticVersion = .{ .major = 2, .minor = 2, .patch = 5 };
while (it.next()) |s| {
if (mem.startsWith(u8, s, "GLIBC_2.")) {
const chopped = s["GLIBC_".len..];
const ver = std.SemanticVersion.parse(chopped) catch |err| switch (err) {
error.Overflow => return error.InvalidGnuLibCVersion,
error.InvalidVersion => return error.InvalidGnuLibCVersion,
};
switch (ver.order(max_ver)) {
.gt => max_ver = ver,
.lt, .eq => continue,
}
}
}
return max_ver;
}
fn glibcVerFromLinkName(link_name: []const u8, prefix: []const u8) !std.SemanticVersion {
// example: "libc-2.3.4.so"
// example: "libc-2.27.so"
// example: "ld-2.33.so"
const suffix = ".so";
if (!mem.startsWith(u8, link_name, prefix) or !mem.endsWith(u8, link_name, suffix)) {
return error.UnrecognizedGnuLibCFileName;
}
// chop off "libc-" and ".so"
const link_name_chopped = link_name[prefix.len .. link_name.len - suffix.len];
return std.SemanticVersion.parse(link_name_chopped) catch |err| switch (err) {
error.Overflow => return error.InvalidGnuLibCVersion,
error.InvalidVersion => return error.InvalidGnuLibCVersion,
};
}
pub const AbiAndDynamicLinkerFromFileError = error{
FileSystem,
SystemResources,
SymLinkLoop,
ProcessFdQuotaExceeded,
SystemFdQuotaExceeded,
UnableToReadElfFile,
InvalidElfClass,
InvalidElfVersion,
InvalidElfEndian,
InvalidElfFile,
InvalidElfMagic,
Unexpected,
UnexpectedEndOfFile,
NameTooLong,
};
pub fn abiAndDynamicLinkerFromFile(
file: fs.File,
cpu: Target.Cpu,
os: Target.Os,
ld_info_list: []const LdInfo,
cross_target: CrossTarget,
) AbiAndDynamicLinkerFromFileError!NativeTargetInfo {
var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 align(@alignOf(elf.Elf64_Ehdr)) = undefined;
_ = try preadMin(file, &hdr_buf, 0, hdr_buf.len);
const hdr32 = @as(*elf.Elf32_Ehdr, @ptrCast(&hdr_buf));
const hdr64 = @as(*elf.Elf64_Ehdr, @ptrCast(&hdr_buf));
if (!mem.eql(u8, hdr32.e_ident[0..4], elf.MAGIC)) return error.InvalidElfMagic;
const elf_endian: std.builtin.Endian = switch (hdr32.e_ident[elf.EI_DATA]) {
elf.ELFDATA2LSB => .Little,
elf.ELFDATA2MSB => .Big,
else => return error.InvalidElfEndian,
};
const need_bswap = elf_endian != native_endian;
if (hdr32.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion;
const is_64 = switch (hdr32.e_ident[elf.EI_CLASS]) {
elf.ELFCLASS32 => false,
elf.ELFCLASS64 => true,
else => return error.InvalidElfClass,
};
var phoff = elfInt(is_64, need_bswap, hdr32.e_phoff, hdr64.e_phoff);
const phentsize = elfInt(is_64, need_bswap, hdr32.e_phentsize, hdr64.e_phentsize);
const phnum = elfInt(is_64, need_bswap, hdr32.e_phnum, hdr64.e_phnum);
var result: NativeTargetInfo = .{
.target = .{
.cpu = cpu,
.os = os,
.abi = cross_target.abi orelse Target.Abi.default(cpu.arch, os),
.ofmt = cross_target.ofmt orelse Target.ObjectFormat.default(os.tag, cpu.arch),
},
.dynamic_linker = cross_target.dynamic_linker,
};
var rpath_offset: ?u64 = null; // Found inside PT_DYNAMIC
const look_for_ld = cross_target.dynamic_linker.get() == null;
var ph_buf: [16 * @sizeOf(elf.Elf64_Phdr)]u8 align(@alignOf(elf.Elf64_Phdr)) = undefined;
if (phentsize > @sizeOf(elf.Elf64_Phdr)) return error.InvalidElfFile;
var ph_i: u16 = 0;
while (ph_i < phnum) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const ph_reserve: usize = @sizeOf(elf.Elf64_Phdr) - @sizeOf(elf.Elf32_Phdr);
const ph_read_byte_len = try preadMin(file, ph_buf[0 .. ph_buf.len - ph_reserve], phoff, phentsize);
var ph_buf_i: usize = 0;
while (ph_buf_i < ph_read_byte_len and ph_i < phnum) : ({
ph_i += 1;
phoff += phentsize;
ph_buf_i += phentsize;
}) {
const ph32: *elf.Elf32_Phdr = @ptrCast(@alignCast(&ph_buf[ph_buf_i]));
const ph64: *elf.Elf64_Phdr = @ptrCast(@alignCast(&ph_buf[ph_buf_i]));
const p_type = elfInt(is_64, need_bswap, ph32.p_type, ph64.p_type);
switch (p_type) {
elf.PT_INTERP => if (look_for_ld) {
const p_offset = elfInt(is_64, need_bswap, ph32.p_offset, ph64.p_offset);
const p_filesz = elfInt(is_64, need_bswap, ph32.p_filesz, ph64.p_filesz);
if (p_filesz > result.dynamic_linker.buffer.len) return error.NameTooLong;
const filesz = @as(usize, @intCast(p_filesz));
_ = try preadMin(file, result.dynamic_linker.buffer[0..filesz], p_offset, filesz);
// PT_INTERP includes a null byte in filesz.
const len = filesz - 1;
// dynamic_linker.max_byte is "max", not "len".
// We know it will fit in u8 because we check against dynamic_linker.buffer.len above.
result.dynamic_linker.max_byte = @as(u8, @intCast(len - 1));
// Use it to determine ABI.
const full_ld_path = result.dynamic_linker.buffer[0..len];
for (ld_info_list) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld.get().?);
if (std.mem.endsWith(u8, full_ld_path, standard_ld_basename)) {
result.target.abi = ld_info.abi;
break;
}
}
},
// We only need this for detecting glibc version.
elf.PT_DYNAMIC => if (builtin.target.os.tag == .linux and result.target.isGnuLibC() and
cross_target.glibc_version == null)
{
var dyn_off = elfInt(is_64, need_bswap, ph32.p_offset, ph64.p_offset);
const p_filesz = elfInt(is_64, need_bswap, ph32.p_filesz, ph64.p_filesz);
const dyn_size: usize = if (is_64) @sizeOf(elf.Elf64_Dyn) else @sizeOf(elf.Elf32_Dyn);
const dyn_num = p_filesz / dyn_size;
var dyn_buf: [16 * @sizeOf(elf.Elf64_Dyn)]u8 align(@alignOf(elf.Elf64_Dyn)) = undefined;
var dyn_i: usize = 0;
dyn: while (dyn_i < dyn_num) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const dyn_reserve: usize = @sizeOf(elf.Elf64_Dyn) - @sizeOf(elf.Elf32_Dyn);
const dyn_read_byte_len = try preadMin(
file,
dyn_buf[0 .. dyn_buf.len - dyn_reserve],
dyn_off,
dyn_size,
);
var dyn_buf_i: usize = 0;
while (dyn_buf_i < dyn_read_byte_len and dyn_i < dyn_num) : ({
dyn_i += 1;
dyn_off += dyn_size;
dyn_buf_i += dyn_size;
}) {
const dyn32: *elf.Elf32_Dyn = @ptrCast(@alignCast(&dyn_buf[dyn_buf_i]));
const dyn64: *elf.Elf64_Dyn = @ptrCast(@alignCast(&dyn_buf[dyn_buf_i]));
const tag = elfInt(is_64, need_bswap, dyn32.d_tag, dyn64.d_tag);
const val = elfInt(is_64, need_bswap, dyn32.d_val, dyn64.d_val);
if (tag == elf.DT_RUNPATH) {
rpath_offset = val;
break :dyn;
}
}
}
},
else => continue,
}
}
}
if (builtin.target.os.tag == .linux and result.target.isGnuLibC() and
cross_target.glibc_version == null)
{
const shstrndx = elfInt(is_64, need_bswap, hdr32.e_shstrndx, hdr64.e_shstrndx);
var shoff = elfInt(is_64, need_bswap, hdr32.e_shoff, hdr64.e_shoff);
const shentsize = elfInt(is_64, need_bswap, hdr32.e_shentsize, hdr64.e_shentsize);
const str_section_off = shoff + @as(u64, shentsize) * @as(u64, shstrndx);
var sh_buf: [16 * @sizeOf(elf.Elf64_Shdr)]u8 align(@alignOf(elf.Elf64_Shdr)) = undefined;
if (sh_buf.len < shentsize) return error.InvalidElfFile;
_ = try preadMin(file, &sh_buf, str_section_off, shentsize);
const shstr32: *elf.Elf32_Shdr = @ptrCast(@alignCast(&sh_buf));
const shstr64: *elf.Elf64_Shdr = @ptrCast(@alignCast(&sh_buf));
const shstrtab_off = elfInt(is_64, need_bswap, shstr32.sh_offset, shstr64.sh_offset);
const shstrtab_size = elfInt(is_64, need_bswap, shstr32.sh_size, shstr64.sh_size);
var strtab_buf: [4096:0]u8 = undefined;
const shstrtab_len = @min(shstrtab_size, strtab_buf.len);
const shstrtab_read_len = try preadMin(file, &strtab_buf, shstrtab_off, shstrtab_len);
const shstrtab = strtab_buf[0..shstrtab_read_len];
const shnum = elfInt(is_64, need_bswap, hdr32.e_shnum, hdr64.e_shnum);
var sh_i: u16 = 0;
const dynstr: ?struct { offset: u64, size: u64 } = find_dyn_str: while (sh_i < shnum) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const sh_reserve: usize = @sizeOf(elf.Elf64_Shdr) - @sizeOf(elf.Elf32_Shdr);
const sh_read_byte_len = try preadMin(
file,
sh_buf[0 .. sh_buf.len - sh_reserve],
shoff,
shentsize,
);
var sh_buf_i: usize = 0;
while (sh_buf_i < sh_read_byte_len and sh_i < shnum) : ({
sh_i += 1;
shoff += shentsize;
sh_buf_i += shentsize;
}) {
const sh32: *elf.Elf32_Shdr = @ptrCast(@alignCast(&sh_buf[sh_buf_i]));
const sh64: *elf.Elf64_Shdr = @ptrCast(@alignCast(&sh_buf[sh_buf_i]));
const sh_name_off = elfInt(is_64, need_bswap, sh32.sh_name, sh64.sh_name);
const sh_name = mem.sliceTo(shstrtab[sh_name_off..], 0);
if (mem.eql(u8, sh_name, ".dynstr")) {
break :find_dyn_str .{
.offset = elfInt(is_64, need_bswap, sh32.sh_offset, sh64.sh_offset),
.size = elfInt(is_64, need_bswap, sh32.sh_size, sh64.sh_size),
};
}
}
} else null;
if (dynstr) |ds| {
if (rpath_offset) |rpoff| {
// TODO this pointer cast should not be necessary
const rpoff_usize = std.math.cast(usize, rpoff) orelse return error.InvalidElfFile;
if (rpoff_usize > ds.size) return error.InvalidElfFile;
const rpoff_file = ds.offset + rpoff_usize;
const rp_max_size = ds.size - rpoff_usize;
const strtab_len = @min(rp_max_size, strtab_buf.len);
const strtab_read_len = try preadMin(file, &strtab_buf, rpoff_file, strtab_len);
const strtab = strtab_buf[0..strtab_read_len];
const rpath_list = mem.sliceTo(strtab, 0);
var it = mem.tokenizeScalar(u8, rpath_list, ':');
while (it.next()) |rpath| {
if (glibcVerFromRPath(rpath)) |ver| {
result.target.os.version_range.linux.glibc = ver;
return result;
} else |err| switch (err) {
error.GLibCNotFound => continue,
else => |e| return e,
}
}
}
}
if (result.dynamic_linker.get()) |dl_path| glibc_ver: {
// There is no DT_RUNPATH so we try to find libc.so.6 inside the same
// directory as the dynamic linker.
if (fs.path.dirname(dl_path)) |rpath| {
if (glibcVerFromRPath(rpath)) |ver| {
result.target.os.version_range.linux.glibc = ver;
return result;
} else |err| switch (err) {
error.GLibCNotFound => {},
else => |e| return e,
}
}
// So far, no luck. Next we try to see if the information is
// present in the symlink data for the dynamic linker path.
var link_buf: [std.os.PATH_MAX]u8 = undefined;
const link_name = std.os.readlink(dl_path, &link_buf) catch |err| switch (err) {
error.NameTooLong => unreachable,
error.InvalidUtf8 => unreachable, // Windows only
error.BadPathName => unreachable, // Windows only
error.UnsupportedReparsePointType => unreachable, // Windows only
error.NetworkNotFound => unreachable, // Windows only
error.AccessDenied,
error.FileNotFound,
error.NotLink,
error.NotDir,
=> break :glibc_ver,
error.SystemResources,
error.FileSystem,
error.SymLinkLoop,
error.Unexpected,
=> |e| return e,
};
result.target.os.version_range.linux.glibc = glibcVerFromLinkName(
fs.path.basename(link_name),
"ld-",
) catch |err| switch (err) {
error.UnrecognizedGnuLibCFileName,
error.InvalidGnuLibCVersion,
=> break :glibc_ver,
};
return result;
}
// Nothing worked so far. Finally we fall back to hard-coded search paths.
// Some distros such as Debian keep their libc.so.6 in `/lib/$triple/`.
var path_buf: [std.os.PATH_MAX]u8 = undefined;
var index: usize = 0;
const prefix = "/lib/";
const cpu_arch = @tagName(result.target.cpu.arch);
const os_tag = @tagName(result.target.os.tag);
const abi = @tagName(result.target.abi);
@memcpy(path_buf[index..][0..prefix.len], prefix);
index += prefix.len;
@memcpy(path_buf[index..][0..cpu_arch.len], cpu_arch);
index += cpu_arch.len;
path_buf[index] = '-';
index += 1;
@memcpy(path_buf[index..][0..os_tag.len], os_tag);
index += os_tag.len;
path_buf[index] = '-';
index += 1;
@memcpy(path_buf[index..][0..abi.len], abi);
index += abi.len;
const rpath = path_buf[0..index];
if (glibcVerFromRPath(rpath)) |ver| {
result.target.os.version_range.linux.glibc = ver;
return result;
} else |err| switch (err) {
error.GLibCNotFound => {},
else => |e| return e,
}
}
return result;
}
fn preadMin(file: fs.File, buf: []u8, offset: u64, min_read_len: usize) !usize {
var i: usize = 0;
while (i < min_read_len) {
const len = file.pread(buf[i..], offset + i) catch |err| switch (err) {
error.OperationAborted => unreachable, // Windows-only
error.WouldBlock => unreachable, // Did not request blocking mode
error.NotOpenForReading => unreachable,
error.SystemResources => return error.SystemResources,
error.IsDir => return error.UnableToReadElfFile,
error.BrokenPipe => return error.UnableToReadElfFile,
error.Unseekable => return error.UnableToReadElfFile,
error.ConnectionResetByPeer => return error.UnableToReadElfFile,
error.ConnectionTimedOut => return error.UnableToReadElfFile,
error.NetNameDeleted => return error.UnableToReadElfFile,
error.Unexpected => return error.Unexpected,
error.InputOutput => return error.FileSystem,
error.AccessDenied => return error.Unexpected,
};
if (len == 0) return error.UnexpectedEndOfFile;
i += len;
}
return i;
}
fn defaultAbiAndDynamicLinker(cpu: Target.Cpu, os: Target.Os, cross_target: CrossTarget) !NativeTargetInfo {
const target: Target = .{
.cpu = cpu,
.os = os,
.abi = cross_target.abi orelse Target.Abi.default(cpu.arch, os),
.ofmt = cross_target.ofmt orelse Target.ObjectFormat.default(os.tag, cpu.arch),
};
return NativeTargetInfo{
.target = target,
.dynamic_linker = if (cross_target.dynamic_linker.get() == null)
target.standardDynamicLinkerPath()
else
cross_target.dynamic_linker,
};
}
pub const LdInfo = struct {
ld: DynamicLinker,
abi: Target.Abi,
};
pub fn elfInt(is_64: bool, need_bswap: bool, int_32: anytype, int_64: anytype) @TypeOf(int_64) {
if (is_64) {
if (need_bswap) {
return @byteSwap(int_64);
} else {
return int_64;
}
} else {
if (need_bswap) {
return @byteSwap(int_32);
} else {
return int_32;
}
}
}
fn detectNativeCpuAndFeatures(cpu_arch: Target.Cpu.Arch, os: Target.Os, cross_target: CrossTarget) ?Target.Cpu {
// Here we switch on a comptime value rather than `cpu_arch`. This is valid because `cpu_arch`,
// although it is a runtime value, is guaranteed to be one of the architectures in the set
// of the respective switch prong.
switch (builtin.cpu.arch) {
.x86_64, .x86 => {
return @import("x86.zig").detectNativeCpuAndFeatures(cpu_arch, os, cross_target);
},
else => {},
}
switch (builtin.os.tag) {
.linux => return linux.detectNativeCpuAndFeatures(),
.macos => return darwin.macos.detectNativeCpuAndFeatures(),
.windows => return windows.detectNativeCpuAndFeatures(),
else => {},
}
// This architecture does not have CPU model & feature detection yet.
// See https://github.com/ziglang/zig/issues/4591
return null;
}
pub const Executor = union(enum) {
native,
rosetta,
qemu: []const u8,
wine: []const u8,
wasmtime: []const u8,
darling: []const u8,
bad_dl: []const u8,
bad_os_or_cpu,
};
pub const GetExternalExecutorOptions = struct {
allow_darling: bool = true,
allow_qemu: bool = true,
allow_rosetta: bool = true,
allow_wasmtime: bool = true,
allow_wine: bool = true,
qemu_fixes_dl: bool = false,
link_libc: bool = false,
};
/// Return whether or not the given host target is capable of executing natively executables
/// of the other target.