-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathfofe_validate.py
99 lines (64 loc) · 2.42 KB
/
fofe_validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# FOFE representation
import os
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression as LR
from sklearn.metrics import roc_auc_score as AUC
from KaggleWord2VecUtility import KaggleWord2VecUtility
from fofe.fofe import FofeVectorizer
#
data_file = 'data/labeledTrainData.tsv'
data = pd.read_csv( data_file, header = 0, delimiter= "\t", quoting = 3 )
train_i, test_i = train_test_split( np.arange( len( data )), train_size = 0.8, random_state = 44 )
train = data.ix[train_i]
test = data.ix[test_i]
#
print "Parsing train reviews..."
clean_train_reviews = []
for review in train['review']:
clean_train_reviews.append( " ".join( KaggleWord2VecUtility.review_to_wordlist( review )))
print "Parsing test reviews..."
clean_test_reviews = []
for review in test['review']:
clean_test_reviews.append( " ".join( KaggleWord2VecUtility.review_to_wordlist( review )))
#
print "Creating a vocabulary..."
vectorizer = CountVectorizer()
vectorizer.fit( clean_train_reviews )
alpha = 1 - 1e-3
fofe = FofeVectorizer( alpha )
print "Vectorizing train..."
train_data_features = vectorizer.transform( clean_train_reviews )
print "Vectorizing test..."
test_data_features = vectorizer.transform( clean_test_reviews )
print "Vectorizing train (FOFE)..."
train_docs = [ doc.split() for doc in clean_train_reviews ]
fofe_train_data_features = fofe.transform( train_docs, vectorizer.vocabulary_ )
print "Vectorizing test (FOFE)..."
test_docs = [ doc.split() for doc in clean_test_reviews ]
fofe_test_data_features = fofe.transform( test_docs, vectorizer.vocabulary_ )
# let's define a helper function
def train_and_eval_auc( model, train_x, train_y, test_x, test_y ):
model.fit( train_x, train_y )
p = model.predict_proba( test_x )
auc = AUC( test_y, p[:,1] )
return auc
#
lr = LR()
auc = train_and_eval_auc( lr, train_data_features, train["sentiment"], \
test_data_features, test["sentiment"].values )
print "logistic regression AUC with count features:", auc
fofe_auc = train_and_eval_auc( lr, fofe_train_data_features, train["sentiment"], \
fofe_test_data_features, test["sentiment"].values )
print "logistic regression AUC with FOFE features:", fofe_auc
# counts
# AUC: 0.945084435083
# alpha 0.99
# AUC: 0.945493966157
# 0.999
# AUC: 0.948106276794
# 0.9999
# AUC: 0.945429484413